Irreducible Decomposition of Representations of Finite
Groups via Polynomial Computer Algebra

Polynomial Computer Algebra '2018
April 16-22, 2018
Euler International Mathematical Institute, St. Petersburg, Russia

Vladimir Kornyak

Laboratory of Information Technologies
Joint Institute for Nuclear Research
Dubna, Russia

April 16, 2018

V. V. Kornyak April 16, 2018



Motivation: decomposition of a quantum system into subsystems

@ Quantum system
» States: Hilbert space H
» Evolution: unitary operators U(g) on H, g € G — symmetry group
» Observation: orthogonal projection into subspace H
measurement = observation in eigensubspaces of Hermitian operator A
called “observable”

@ Decomposition kinds
@ tensor product: H = @ H,, x € X — “spatially separated subsystems”

X
idea of locality is an approximation due to quantum entanglement

@ subrepresentations of G: H = @ H,,, — invariant subspaces

m
independent quantum subsystem in each subspace
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Permutation group
G(Q) is a group of bijections of a set 2 = {1,...,N}
i€ denotes action of ge Gonie

Cayley's theorem: any axiomatic group is a permutation group
Example

As = <a7b‘a5 =b? = (ab)® = 1>
S = {a7 b} = {(17 2,11, 12,4)(5, 6,10,7, 8), (1,7)(27 8)(37 12)(47 11)(57 10)(67 9)}

S ={s1,...,5¢} € G is generating set: G ={5)
S1,...,Sk are generators
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Permutation representation

is representation G in N—dimensional vector space over field F
by matrices P(g),-j = dig;j

P(g) is (0,1)-matrix = F can be any field

any representation is a subrepresentation of some permutation
representation

Q F is a finite field GF(q)

» MeatAxe is an efficient algorithm of Las Vegas type
“matrix groups, having degrees up to the high hundreds”
important role in classification of finite simple groups
inefficient in characteristic 0
» Hilbert spaces over GF(q) are problematic = little use for physics

@ _F is a constructive field of characteristic 0

» F contains a minimal splitting field for G
» F is an abelian extension of Q —
F is constructive dense subfield of R or C
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Orbitals and suborbits

@ Orbital (coherent Schur configuration): orbit of G on Q x Q

@ Rank R of G on Q is the number of orbitals A, € {Aq, ...
© Stabilizerof ieQ: Gi={geG|i#=i} <G

@ Suborbit = orbit of stabilizer
Natural one-to-one correspondence between orbitals and suborbits

A—Xi={jeQ](ij)e A}
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Invariant bilinear forms and centralizer ring
@ Invariant bilinear form:

A=P(g)AP(g™") = (A)j; = (A)jsje geG

@ Basis of invariant forms: matrices {Aj,..., AR}
One-to-one correspondence with orbitals:
_ )L if(ij) e Ar
(A = {0, i£(1,7) ¢ A
Always assume A; = 1y
© Centralizer ring:

— characteristic function of A, on Q2 x Q

R
ApAg =Y G A, Cr,eN={0,1,..}
r=1

_centralizer ring representation P
is commutative is multiplicity-free
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As on icosahedron: basis of centralizer ring

QxQ={1,...,12} x {1,...

Ar + Ao + A3 + Ay =
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Splitting invariant inner product

@ T is unitary transformation splitting P into M irreducible components:
TP(g) T=1®Us() @ @ VUg,(g) @ @ gy (g)
@ 1y is standard inner product in any orthonormal basis
© Decomposition of 1y in splitting basis
IN=14=1® - D1y, D - D1y,
@ Inverse image of the decomposition in original permutation basis
In=Bi+ - +Bn+--+Bu
© B, is inverse image of irreducible component:
T BmT =014cp+tdp s ®Lg, @04, 4 tdy = Drm
» B, is projector: B2 = B, BB =0if m#m

» trB, = dny
Bm's carry full information about irreducible decomposition of P
Linear system for T: B1T — TDy = --- =BuyT — TDy =0y
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General idea of algorithm

@ Generic invariant form: X = x; A1 + -+ - + xp AR
@ B, is solution of equation X% — X = Oy
@ X? — X <« set of quadratic polynomials:
E(x1,....,xq) ={E1(x1,...,xR),.--, ER(x1,..., xR)}

Q B, = bm’lAl + bm’zAz + -+ bm7R.AR

[bm.1,-- ., bmr] is solution of the system E(xi,...,xg) =0
© Ay = Iy — trBy = bpiN 222292 p 1 — do/N
Q dne[l,2,....N—1]

General outline

@ inspect d € [1,2,...,N — 1] in ascending order
@ extract solutions {Bi,..., Bk} of E(d/N,x2,...,xg) =0

@ add orthogonality conditions to polynomial system:
E(Xl, v 7XR) <« E(X;[7 v ,XR) U {Bl)(} VY {BkX}
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Part |. Implemented in C

Input: S = {s1,...,sk} // generating set of permutations
Output: E(xi,...,xR) // idempotency polynomials
O(by,...,br;x1,...,xr) // orthogonality polynomials
SplitRepresentation // code in Maple
1: compute basis of centralizer ring A1, ... ,AR

2: compute multiplication table A,.4, = Z

3: construct idempotency polynomials E(xl, - ,XR)
4: construct orthogonality polynomials O(by, ..., br;x1,...,XR)
5. construct code SplitRepresentation
for processing polynomial data
6: return SplitRepresentation (E(xi,...,xRr),
O(bl,. cey bR;Xl, ce ,XR))

V.

Algorithm 1: PreparePolynomialData
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Part Il. Implemented in Maple

Input: E(xq,...,xr), O(b1,...,br; X1, ..., XR)

Output: Irreduczb/ePrOJectors =[(1,B1),...,(dm,Bm) ..., (du, Bum)]

1: IrreducibleProjectors < [ (1, % [1,...,1])] // trivial subrepresentation
20 E(x1,...,xr) < E(x1,..., ) uO(l,...;1;x1,...,xR)
3: Sdim <1 // sum of dimensions, global variable
4: D—0 // current dimension, global variable
5: while Sdim < N do
6: D <« NextRelevantDimension(D)
7 all_solutions < SolveAlgebraicSystem(E(D/N,x, ..., xr))
8: if all_solutions # @ then
9: h < NumberOfFreeParameters(all_solutions)
10: if h =0 then
11: for solution € all_solutions do
12: UseSingleSolution(solution)
13: else
14: repeat
15: solution < PickBestSolution(all_solutions)
16: UseSingleSolution(solution)
17: all_solutions < SolveAlgebraicSystem(E(D/N,xs, ..., xRr))
18: until all_solutions = @
19: return [rreducibleProjectors
Algorithm 2: SplitRepresentation
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Comments on SplitRepresentation

@ D < NextRelevantDimension(D)
® D «— D+ 1— simplest version
@ repeat D < D + 1 until D | Ord(G) — about 25% faster
@ use character decomposition if known — most effective version
@ UseSingleSolution
Input: solution = [f1, ..., Ar]

1: E(Xl, e ,XR) «— E(Xl, e ,XR) )/ O(ﬁl, e BRI XD, - ,XR)
2: IrreducibleProjectors < |[IrreducibleProjectors, (D, solution)]
3: Sdim <« Sdim + D

© number of free parameters h > 0 = irreducible component of
multiplicity k : h = [k2/2J
General solution is a manifold of dimension h
k mutually orthogonal solutions are constructed by procedure
PickBestSolution
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Our C + Maple vs Magma's MeatAxe

3906-dimensional representation of exceptional group of Lie type Gy(5)

Splitting over GF(2) is demonstration of MeatAxe abilities in Magma documentation

PreparePolynomialData + SplitRepresentation:
Rank: 4. Suborbit lengths: 1,30,750,3125.

3906 =~ 13930 ® 1085 @ 1890
104

Bl = _— Ak
3906 =

5 3 1 1
Byso = o (-Al et gl ﬁfh)

5 1 1 1
Buogs = 15 (-Al —ghtp A @Az;)

15 1 1 1
Biggo = 3 (Al - %Az - %As + EA“)

Time C: 1.14 sec. Time Maple: 0.8 sec.
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Magma fails to split the representation over Q
Ord(Gy(5)) = 5859000000 = 2° - 3% 56731 = let's try GF(11)

> load "g25";
Loading "/opt/magma.21-1/1ibs/pergps/g25"
The Lie group G( 2, 5 ) represented as a permutation
group of degree 3906.
Order: 5 859 000 000 = 2°6 * 33 * 576 * 7 * 31.
Group: G
> time Constituents(PermutationModule(G,GF(11)));
L
GModule of dimension 1 over GF(11),
GModule of dimension 930 over GF(11),
GModule of dimension 1085 over GF(11),
GModule of dimension 1890 over GF(11)

Time: 282.060
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Important group constructs

@ Schur multiplier: M(G) = H2(G, 2)

for C, = M(G) /N

n.G denotes a central extension or covering group of G:
1-C,>nG—->G—-1

e Outer automorphism group: Out(G) = Aut(G) /Inn(G)

for H~ Out(G) /N — G x H

for H = C,, the notation G:n is used
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Examples of computations

Timings: PC with 3.30GHz Intel Core i3 2120 CPU

Generators of group representations:

section “Sporadic groups” ATLAS of Finite Group Representations
http://brauer.maths.qmul.ac.uk/Atlas/v3/

2016-dimensional representation of Mathieu group cover 3. My,
Rank: 16 Suborbit lengths: 13,553,663, 165%, 3303

2016 ~ 1621, © 21, ® 21; ® 55 ® 105, ® 105, ® 105_ @ 105_
@154 @210, ® 210; ® 210; ® 231, ® 231, @ 231,
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1 1
82105 = — {./41 - TSA3 - TSA4

458
+% (1+i\/§>u49+% (l—i\f3>Alo
+% (1+iv3) Au + % (1-1V3) Ao

_% (1 + i\f3) Ags — % (1 - i\@) Aw}

Bz, = 91)% <,41 - %A2 — 1—15A3 - %AL; + %A5 + 1—11A6

1 1 1 1 1
+ ﬁA7 + ﬁAs + ﬁfb + ﬁAlo - EAll

1 3 3
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Baz1, = % {Al - %A3 + %A4 - %A6
+% (1+ixf3)A7+%(1—i\/§)As
f% (1 +i\/§) Ag — % (1 —i\/g) Ao
+% <1+i\/§> A11+% (1—i\/§> A1z

7% (1 + i\/§> Ais — % (1 - i\/§) “416}

Time C: 3 sec. Time Maple: 1 h 10 min 48 sec.



Several decompositions in concise form

@ 1980-dimensional representation of Mathieu group cover 6.Ma;
Rank: 17. Suborbit lengths: 16,143,843 336°.

1980 >~ 1®21,®21;® 215D 55D 99, ® 995 © 995
@®105, 105, ®105_ @ 105_
@120 @ 154 © 210 ® 330 @ 330

Time C: 2 sec. Time Maple: 8 h 41 min 1 sec.

@ 29155-dimensional representation of Held group He
Rank: 12. Suborbit lengths:
1,90, 120, 384, 9602, 1440, 2160, 28802, 5760, 11520.

29155 =~ 1 ® 51 © 51 @ 680 @ (1275 @ 1275)
®19209 43529 7650 © 11900

Time C: 5 min 41 sec. Time Maple: 15 sec.



@ 66825-dimensional representation of McLaughlin group cover 3.McL
Rank: 14. Suborbit lengths: 13,630, 22403, 50403, 80643, 20160.

66825 =~ 13® 252 1750 ® 2772 ® 2772 © 5103, ® 51035 ® 51034
@ 5544 © 6336 © 6336 © 8064 © 8064 ® 9625

Time C: 39 min 36 sec. Time Maple: 14 min 11 sec.

@ 98280-dimensional representation of Suzuki group cover 3.Suz
Rank: 14. Suborbit lengths: 13,8913, 28163, 5940, 19008, 207363.

98280~ 1® 78 ®78® 143 ® 364 ® 1365 @ 1365 @ 4290 @ 4290
@®5940 © 12012 © 14300 @ 27027 @ 27027

Time C: 2 h 36 min 29 sec. Time Maple: 7 min 41 sec.



